
Dreadful defects in software are lurking everywhere you look. In fact, more
than 85% of all applications have at least one vulnerability in them. These are the

10 most common — and scariest — vulnerabilities plaguing applications today.

SOFTWARE SECURITY VULNERABILITIES
10 SCARIEST

ENCAPSULATION
WHAT IT IS

Encapsulation vulnerabilities don’t
su�ciently encapsulate critical
data or functionality. Examples
include trust boundary violations,
protection mechanism failures, and
deserialization of untrusted data.

CONSEQUENCE

Ghoulish code can
cross over between
components and data
can escape.

REMEDY

Wrap private data in classes to
keep implementation details
hidden from the user. Be sure to
correctly set security headers —
and don’t trust serialized inputs
from outside the application.

CONSEQUENCE

Giving you a real scare,
attackers can assume
privileges of users or
administrators.

REMEDY

Use custom or o�-the-shelf
authentication and session
management mechanisms
to protect passwords and
session IDs from abuse.

CONSEQUENCE

Attackers can input
creepy code to read
and steal data, hijack
sessions, and execute
malicious code.

REMEDY

Treat data entered by users
as untrusted. Use whitelists
to define valid input data.

CONSEQUENCE

An attacker can access,
alter, or delete data in the
back-end database without
authorization and do other
undesirable things.

REMEDY

Use parameterized
queries so the database
treats them as data
instead of as part of
a SQL command.

WHAT IT IS

Insu�cient input validation
includes a number of flaws
that permit malformed input
that can cause security issues,
including open redirect and
unsafe reflection.

SQL INJECTION

INSUFFICIENT INPUT
VALIDATION

CRLF INJECTION CODE QUALITY

RIP
</>

001001
0100110

CRYPTOGRAPHIC ISSUES INFORMATION LEAKAGE

Get the State of Software Security Report

VERACODE.COM/SOSS

WONDERING IF THE STATE OF YOUR SOFTWARE
IS SECURE OR SCARY?

OF APPLICATIONS
ARE VULNERABLE

OF APPLICATIONS
ARE VULNERABLE

WHAT IT IS

Flaws in the handling of user
credentials could permit attackers
to bypass access controls. Some
common errors include hard-
coded passwords and plaintext
passwords in config files.

OF APPLICATIONS
ARE VULNERABLE

WHAT IT IS

SQL injection allows
an attacker to gain
unauthorized access
to a back-end database
by using maliciously
crafted input.

CREDENTIALS
MANAGEMENT

OF APPLICATIONS
ARE VULNERABLE

27%

CROSS-SITE SCRIPTING

Copyright © 2017 CA Veracode. All rights reserved.

LEARN MORE AT VERACODE.COM, ON THE
VERACODE BLOG AND ON TWITTER.

BEWARE

47%

CONSEQUENCE

Attackers can view and
steal sensitive information,
modify files and content
on the a�ected website,
and hijack the user’s
browsing session
or computer.

REMEDY

Input sanitization and encoding
output are yourbest friends
against injection attacks.

WHAT IT IS

Cross-site scripting (XSS)
vulnerabilities give attackers the
capability to inject client-side
scripts into the application,
potentially bypassing security
controls in the process.

OF APPLICATIONS
ARE VULNERABLE

49%

CONSEQUENCE

An attacker can use
leaked information about
the user or the application
to hone successful attacks
against the application.

REMEDY

Vulnerability scanning
tools will cause error
messages to be generated
and can search for APIs
that leak information.

WHAT IT IS

Information leakage flaws can reveal
sensitive data about the application,
environment, or user that could be
leveraged by an attacker to hone
future attacks against the application.

OF APPLICATIONS
ARE VULNERABLE

67%

CONSEQUENCE

Leftover debug code
may contain unanticipated
functionality that an
attacker could use to
disclose sensitive data
(such as test methods).
An attacker could use
improper resource
shutdown or release to
mount a Denial of Service
attack by causing the
application to use up host
resources,like memory.

REMEDY

An informed development
team is key to secure
coding. Development
teams with eLearning
on secure coding see fix
rates improve by 19%.

WHAT IT IS

Some examples of code
quality defects include improper
resource shutdown or release,
leftover debug code, and using
the wrong operator when
comparing strings.

OF APPLICATIONS
ARE VULNERABLE

63%

43%

CONSEQUENCE

Attackers can access
files and directories by
sending modified URLs
to the web server.

REMEDY

Use filters to blacklist
commands and escape
codes commonly used
by attackers.

OF APPLICATIONS
ARE VULNERABLE

WHAT IT IS

Directory traversal flaws open
up the possibility of attacks
that allow cybercriminals to
gain unauthorized access to
restricted directories and files.

48%

CONSEQUENCE

By introducing an
unexpected CRLF
injection, an attacker
can modify application
data, deface websites,
hijack sessions or
browsers, and exploit
other vulnerabilities.

REMEDY

Never trust user input. Always
properly encode output in HTTP
headers or log entries that would
otherwise be visible to users
or administrators.

OF APPLICATIONS
ARE VULNERABLE

WHAT IT IS

CRLF injection vulnerabilities enable
what is known as Carriage Return Line
Feed (CRLF) injection attacks. Examples
include improper output neutralization
for logs and improper neutralization
of CRLF in HTTP headers.

60%

CONSEQUENCE

Encryption hides
important information
like passwords, payment
info, personally identifying
data, etc. If improperly
stored data is leaked, it
can turn into your worst
nightmare.

REMEDY

Don’t implement your own
encryption — enlist experts
in the field to avoid a
scream-worthy breach.

OF APPLICATIONS
ARE VULNERABLE

WHAT IT IS

Cryptographic flaws
include using broken crypto
algorithms, improperly validating
certificates, storing sensitive
information in cleartext, and
employing inadequate
encryption strength.

64%

DIRECTORY TRAVERSAL

20%

10

8

9

7

6

4 3

2 1

5

SOURCE: Veracode State of Software Security Vol. 9. Vulnerability percentages based on prevalence in initial assessments of applications Veracode scanned between April 1, 2017 to March 31, 2018.

https://www.veracode.com/state-of-software-security-report

